Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.03.21262841

ABSTRACT

BackgroundPatients with coronavirus disease-2019 (COVID-19) present varying clinical complications. Different viral load and host response related to genetic and immune background are probably the reasons for these differences. We aimed to sought clinical and pathological correlation that justifies the different clinical outcomes among COVID-19 autopsies cases. MethodsMinimally invasive autopsy was performed on forty-seven confirmed COVID-19 patients from May-July, 2020. Electronic medical record of all patients was collected and a comprehensive histopathological evaluation was performed. Immunohistochemistry, immunofluorescence, special stain, western blotting and post-mortem real-time reverse transcriptase polymerase chain reaction on fresh lung tissue were performed. ResultsWe show that 5/47 (10,6%) patients present a progressive decline in oxygenation index for acute respiratory distress syndrome (PaO2/FiO2 ratio), low compliance levels, interstitial fibrosis, high -SMA+ cells/protein expression, high collagens I/III deposition and NETs(P<0.05), named as fibrotic phenotype (N=5). Conversely, 10/47 (21,2%) patients demonstrated progressive increase in PaO2/FiO2 ratio, high pulmonary compliance levels, preserved elastic framework, increase thrombus formation and high platelets and D-dimer levels at admission (P<0.05), named as thrombotic phenotype. While 32/47 (68,1%) had a mixed phenotypes between both ones. ConclusionsWe believe that categorization of patients based on these two phenotypes can be used to develop prognostic tools and potential therapies since the PaO2/FiO2 ratio variation and D-dimer levels correlate with the underlying fibrotic or thrombotic pathologic process, respectively; which may indicate possible clinical outcome of the patient.


Subject(s)
COVID-19 , Fibrosis , Thrombosis , Respiratory Distress Syndrome
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.24.457520

ABSTRACT

ABSTRACT The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats ( Rattus norvegicus ); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Subject(s)
Respiratory Insufficiency , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL